ChE 344
Reaction Engineering and Design

Lecture 13: Tuesday, February 22, 2022

Non-isothermal reactor design-Energy balance and adiabatic
reactors

Reading for today’s Lecture: Chapter 11.1-11.3

Reading for Lecture 14: Chapter 11.4-11.5



Lecture 13: Non-isothermal Reactor Design
Related Text: Chapter 11.1-11.4

Due to the strong dependence of the reaction rate on temperature, we need to know how to properly
account for temperature change in non-isothermal reactors.

Some key definttions from thermodynamics:
Cp,; 1z heat capacity of species § (in this class we assume to be constant, and assume no phase changes)
H; 1s molar enthalpy of species §, in units of J/mol

Hy(T) = Hy(T1) + (T — T1)Cp;s

ACp = va Cpi
ﬂer:lz = ZVEH:'

For example reaction ad + bB — ¢C + dD:
AH,., = —aH, — bHg + cH, + dHp
ACp = —aCpy — bCpp + cCor + dCpp
The Energy Balance

Open system, sums refer to all species j in the reactor.

.. dEg,
D FElin= ) Filowe + @ =W =—2
i i

For most chemical reactors (kinetic and potential energy are small, no shear stress):

o dE,
D Folo— ) FHi+Q W, ==

For systems that can be solved in terms of conversion, X, assuming X = 0 at inlet, and no phase change:

. dE,
Fao[ (D =0:CoulT = To1) = (At (Trar) + ACR(T = Toof ) J] + @ — 1 = —2
For adiabatic reactors in this class:

¢ No heat added'removed from reactor
s  No shaft work
»  Steady state

(z _'91'CP.1' [T - TEII])' —
[AHen(Tres ) + ACH(T — Tpef)]

X



Last time, multiple reactions
Reactors in series PFR 1 PFR 2

GGG,

Reactions in series

k k
A->B B-SC
Reactions in series in reactors in series
PFR 1 PFR 2

oo o

Other types of multiple reactions:

Complex Parallel Independent
A+B-C+D k4 kq
A+C - E A->D A->D

kz kZ
E -G A-U B-U



Example: Batch reactor-want to maximize Ng:
ki k
ASBSC
If we assume our batch reactor is constant volume: C, = N/V,
Mole balance on each species

dc, dC, dC,
— =7 — =17 —_— =T
ac 4 dt B dac ¢
Rates on each species
Tg =T14 T T24 g = T1p + Tp Tc = Tic T Toc
—7"1A — ’)"1 — kch rlB —_ T'l —_ k]_CA rlC — O
4 =0 —1yg =1, = k,Cg T =1, = k(g

Tqg = _kch g = kch — kZCB Tc = kZCB




Stoich. For batch N4 + Ng + No = Nyg + Ngg + N

Cijj/VO CA+CB +CC — CAO +CBO +CCO

Combine: Constant V batch design and rate laws

dCy
et
dCg
F = k1Cy — kyCp
dC.
dt = k,Cp Can replace with

mole balance

Solve first equation: Analytically or numerically

dCA — dt

—k1Cy

Cy = Cyoe ™"t 5



Can plug this into balance for B:
dCpg
—— + k,Cg = k Cype "1t
at 2Lp 1Lao
Can solve to get (through Laplace transform or integrating

factor)

CAOkl CAOkl
C' — _I_ C —kzt . —klt
B <k1 "k, BO) ° ey — k,

And by mass balance:
Cc = Cyg0 + Cpo + Cco — C4 — Cp
= Cpo + Cpo + Cco — Cape ™ 1!

CAOkl CAOkl
— C —kzt _ —klt
[(kl—k2+ Bo)e ke —ky




IfChy=1M, Cgy=Cp=0M, k; =1min?, k, =2 min?

Series reaction

107 ki k> )
A-B-C

[:]8 _ _
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S 06l ]
i
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02} |

0ol Would shift this direction if k, is lower;

00 05 10 15 920
Time / min

Could also numerically solve '



Then have: Skipped in class

dC
d_: —+ kZCB — kchoe_klt

Can solve by taking Laplace transform

F(s) = foof(t)e_“dt
0

Gy (s) = L{Cs (D)) = f Cp(D)e™stdt
0

dC
L{d_tB + kZCB _— kchoe_klt}

0.0)

*dC _
J —Le~stdt + k,Cp(s) = leAO] e Fite=stqt
o dt 0

© dCy

., dt

_ 1
e_Stdt + kZCB(S) — k1CAO k T
1



Recall for Laplace transforms:

LI (©)} = sF(s) — f(0)

Skipped in class

— — 1
SCg(S) — Cgg + k,Cp(s) = k1Cyg K s
1

SCpo + k1(Cyo + Cpo)

() = = kG + )
-1 {Z’E(s) _ sCpo + k1(Cao + CBO)}
(s+ky)(s+ ky)
C, = £ {SCBO + k1 (Cyo + CBOY>
(s+k)(s+ky) |

p,
=L_1{ kchO }+L_1< CBO }

(s+ki)(s+ky)




Some definitions: Skipped in class

L—l 1 — eat
s—a
Cp = k1CpoL™" ! + Cpoe 2!
1A (s+k)(s+k,) 5o
-1 b at .;
L G—a)? — b2 = e“*sinh(bt)
-1 b at .-

L 7 _2gstaZ—pZ| e“*sinh(bt)
- 1 ~ e%sinh(bt)
s2 4+ (ky + ks + koky) b

k, + kq

ky, + ki =—2a;a = —

2
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a2 — b2 — kzkl,b —

k1

— kz Skipped in class

2

C
B kl_kzt _kl—kzt_

b C 2 _k2;k1t e 2 —e 2 L kot

= e e
AU P— 5 BO
CAOkl CAOkl
C p— -I— C —kzt _ —klt
B <k1 "k, BO) ° ki —k,

11



Isothermal reactors:

T . I dT dT 0 dT 0
= Oor more rigorous — =0 —=0 — =

° SO v TV aw T dr
Two questions:
1. Why would a reactor not be isothermal?

2. What’s the big deal if its not isothermal?

Short answers:

1. Many reactions are exothermic or endothermic, and so T of
reactants/products can change with conversion
2. A lot of the parameters in our reactor design algorithm are

dependent on temperature!

L= 4 _Eq For gases:
= Ae RT

Fr TP
AH,.,, (1 1 y=p. T 0
Kc(T) = Kc(Ty)exp [— B’;x” (; - T—l)] "FroTo P




Real reactors

In real systems, often the
isothermal assumption breaks
down. Imagine an endothermic
reaction, where as the reaction
proceeds the T,y decreases, d_T £ 0
lowering k and slowing r,. dVv
Even worse, imagine an

exothermic reaction where the

T increases, increasing k,

increasing r,, which increases T
more!

We can model this using
energy/heat balances. Thermal image of cat. cracker

(long chain hydrocarbons to
shorter chains) 2




Dealing with temperature effects is conceptually similar to
pressure drop, because we end with coupled equations.

PBR combined equation example: p(W)
Ea

dX _ —7’;{ _ kCA _ Ae R CAO(l _X) TO P(W)

dW  Fh,o Fio  Fao(l+€X) P,

For pressure drop, we used the Ergun equation to link P or p
and W, and then we could solve the coupled equations.

For non-isothermal reactors, we will link T to:
* X (for adiabatic reactors)

 XandV (for reactors with heat exchangers)
using the Energy Balance

We will start with the simpler adiabatic reactors (no heat
entering/leaving) for next several lectures (up to Midterni 2)




Going to start off with giving the simplified equation for single
reaction: Then will show simplifications required to use it

Adiabatic CSTR, PFR, Batch or PBR Energy Balance:
2.0,Cp ;[T —T]
—|AH s (Trer) + ACH(T — Trer) ]

Cp i is the heat capacity of species i

X =

0; is the initial/inlet ratio of species i to limiting reactant
T, is the inlet (flow) or initial (batch) temperature

T is the temperature at conversion X

Trer is a reference temperature (T, in book)

ACp is the change in heat capacities of associated reaction
AH,.,,, is the heat of reaction (AHp, in book)

ACP — Z ViCP,i



Often A,y (Trer) > ACH(T — Trer)

_%6Cp|T — T

X
o _Aern]

X < +|T — T,]

Conversion is linear with temperature (sign related to the sign
of heat of reaction).

If Aszo
_[Aern]XEB

2. 0;Cp;

T:To‘l‘
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Discuss with your neighbors:

Which of the following would you expect to be correct for an
adiabatic system?

B)
T Exothermic TT Exothermic
rxn. 0 rxn.
TO
C) T Conversion D) T Conversion
Endothermic Endothermic
To rxn. rxn.
TO

Conversion Conversion



Possible ways to solve for adiabatic reactors:
Levenspiel plots

F
Choose X — calculate T — calculate k — calculate -r, > —22

FAO

Alternative (recommended if able)

We can use our normal algorithm of 1) mole balance, 2) rate

law, 3) stoichiometry, and then solve using energy balance for
T = f(X) with software packages (Polymath, etc.)



Energy balance is similar to how we did a mole balance.

. W Work
Fi,in -8 Tao ~ Fi,out
| > / Esys >
Eiin Heat / Ei out
. . dE
Z FE;l + 0 — W =2
out dt
Rate of Rate of Rate of Rate of
energy energy flow of work Rate of
addedto |-| leaving |+| heatto |-| done by _ accumulation
system by system by system system of energy
mass flow mass flow from surr- on surr- within system
into system out of oundings oundings
system []/S'ﬁ




E; is energy of species i, and has units of J/mol.
Note Esys is total energy (not of just one species)

uz
Ei = Ui + — + 9z
o 2 <o
internal =~ potential energy

kinetic energy
Kinetic energy and potential energy are generally small for

chemical reactors and so E; = U;
Separating W into flow work and other work (Wsp, ¢ or W)
+ W

W — _ZFL'PVL' _ +2FLPI71
n out

~ o No shear stress
V; specific molar volume

Plugging in to get new energy balance equation:

z F,(U;+PV)| - Z F,(U; + P1%)
Vi " Vi

. dE,,
+ Q- W, =
out Q > dt

i



Enthalpy of a species i:

H; = U; + PV, [J/mol]
.. dE,,
QW =
Q S dt
Z FLOHLO
aA + bB —» cC + dD
L b C d
I?ev.vrltemtermsof A+—-B—>—-C+=D
limiting reactant A a a a

F; = Fy0(0; +v;X)

v vs. v;: v is volumetric flow rate (italic ‘v’), v; is stoichiometric
coefficient (‘nu’)

b b
LT Fy Fp = Fyo (QB_EX) B = a.,



Substituting in info from stoichiometry:

dEg,s
dt

Z Fao0;Hyg — z Fao(0; + viX)H; + Q — W, =

_FAOZ(H io — Hil = viH;X) + Q — W,

Fao Z 6;[H;y — FAOX[Z v H}+ 0 —W, = Sys

z viH; = heat of reaction (at outlet T) = AH,.,, (T,y¢)

How do you get H,? Usually will know H. for some reference
(solid), and can convert to conditions you are interested in.

22



H;(T) = Heat capacity of solid

H; (Trer) + f

Tre f

I'm Ty
Cp.s,dT + AHyp, (Ty) + f Cp ., dT

meliing Tm

. of liquid
+ AHv,i(Tv) +f Cp’gidT
vaporization o of gas

So also need the energy of reaction to be shifted from T . by
heat capacities.

In a simple case:

1. No phase change
2. C, are constant with temperature

Aern(T) — Aern(Tref) + 2 ViCP,i(T o Tref)



Define ACp = ), v;Cp ;
Aern(T) — Aern(Tref) + ACP (T - Tref)

Energy balance (just rewriting it from W
- dEgy,

In addition for our I|m|t|ng assumptions of no phase change
and constant heat capacities with temperature:

H; = Hig + Cp ;(T — Tj)
Hyy — H; = _CP,i(T - To)

24



Discuss with your neighbors:

What is the heat of reaction for ammonia synthesis at 150 °C
in kcal/mol of N, reacted and in kcal/mol H, reacted?
N, + 3H, - 2NH;

Hyp,(25°C) = —11.02 kcal/mol NH;

CP,NH3 — 892 Cal/m0l Hz - K
Cpn, = 6.984cal/mol H, - K
Cppy, = 6.992cal/mol H, - K

A) -23.3 kcal/mol N,;
-7.766 kcal/mol H

B) -23.3 kcal/mol N,;
-69.9 kcal/mol H,

H;, (25°C) = 0
Hy (25°C) = 0

C) -22.04 kcal/mol N,;
-7.347 kcal/mol H,

D) -22.04 kcal/mol N,;
-66.12 kcal/mol H,



Per mole of nitrogen (as if N, is limiting reactant)

AH....,(T = 25°C) = ZH,‘{,H3 — 3H,‘;,2 — H,‘{,Z
Per mole of hydrogen (as if H, is limiting reactant)

2 1
Aern(T — ZSOC) — §HIiIH3 — 1ch_>12 —§HX,2

Adjusting to the temperature of interest:

AH....,(150°C) = AH,.,,(25°C) + ACp(150°C — 25°C)
Per mole of nitrogen (as if N, is limiting reactant)

ACp = ZCP,NH3 - 3CP,H2 - CP,NZ ‘)

Per mole of hydrogen (as if H, is limiting reactant)

: ] D
ACP=_

3 Cpnm, —1Cpp, — 3 Cp.N, -

26



Energy balance in terms of heat capacities and heat of
reaction

(z —0;Cp [T — To])

— |AH s (Tref) + ACo(T — Trep) | X |+ Q — Wi = —F—

FAO

C,;includes all species in the reactor including inerts, but
Vinert= 2€ro, so inerts are not included in ACp

Adiabatic reactor (additional assumptions)
1.0 =0
2. Wshaft =0

dE
3. Steady state: dstys =0



(Z —0;Cp,i[T - To]) = |8Hypan (Trer) + ACH(T — Trer ) |X
= 0

2. 0;Cp ;[T —Tg]

X =
—|AH 3 (Trer) + ACp(T — Tref)]

Remember, we can either:

* use this and the rate law to construct a Levenspiel plot,
or

we can use our normal algorithm of 1) mole balance, 2)

rate law, 3) stoichiometry, and then solve using energy

balance for T = f(X) with software packages (Polymath,
etc.)
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